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Abstract
Wildland fire smoke exposures are an increasing threat to public health, highlighting the need for studying 
the effects of protective behaviours on reducing health outcomes. Emerging smartphone applications 
provide unprecedented opportunities to deliver health risk communication messages to a large number of 
individuals in real-time and subsequently study the effectiveness, but also pose methodological challenges. 
Smoke Sense, a citizen science project, provides an interactive smartphone app platform for participants to 
engage with information about air quality, and ways to record their own health symptoms and actions taken 
to reduce smoke exposure. We propose a doubly robust estimator of the structural nested mean model 
that accounts for spatially and time-varying effects via a local estimating equation approach with 
geographical kernel weighting. Moreover, our analytical framework also handles informative missingness 
by inverse probability weighting of estimating functions. We evaluate the method using extensive 
simulation studies and apply it to Smoke Sense data to increase the knowledge base about the relationship 
between health preventive measures and health-related outcomes. Our results show that the protective 
behaviours’ effects vary over space and time and find that protective behaviours have more significant 
effects on reducing health symptoms in the Southwest than the Northwest region of the U.S.
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1 Introduction
Wildland fire smoke is an emerging health issue as one of the largest sources of unhealthy air qual-
ity, attributing an estimated 340,000 excess deaths each year globally (Johnston et al., 2012). 
Although there are a number of exposure-reducing actions recommended, there is a lack of evi-
dence of the long-term reduction in the number of adverse health outcomes by taking health- 
protective behaviours (treatments). The Smoke Sense citizen science initiative (Rappold et al., 
2019), introduced by the researchers at the Environment Protection Agency, aims to engage citizen 
scientists and develops a personal connection between changes in environmental conditions and 
changes in personal health to promote health-protective behaviour during wildland fire smoke ex-
posure. The overarching objective of the Smoke Sense project is to develop and maintain an inter-
active platform for building knowledge about wildfire smoke, health, and protective actions to 
improve public health outcomes. The use of smartphone application (app) is designed as a risk re-
duction intervention based on the theory of planned behaviour and health belief model. Through 
Smoke Sense, participants can report their perceptions of risk, adoptions of protective health be-
haviours and health symptoms. Therefore, Smoke Sense is uniquely placed to address this knowl-
edge gap.
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App-based platforms provide unprecedented opportunities to reach users and learn about the 
personal motivations to engage with the information delivered through the apps. However, the 
data also present analytical and methodological challenges as summarized below. (i) Adoption 
of health-protective behaviours (treatments) were left to the participants and may depend on 
the participant’s characteristics and perceptions of benefits and barriers of these actions. 
Self-selection can potentially result in confounding by indication (Pearl, 2009). Thus, statistical 
methods must adequately adjust for participant characteristics that confound the relationship be-
tween their behaviours and the outcome. This challenge is more pronounced in longitudinal 
Smoke Sense data because of the time-varying treatments and confounding. (ii) Although partic-
ipants can be viewed as independent samples, the causal effect of treatment may vary over the 
study’s large and socially and environmentally diverse domain that is not explained by the ob-
served covariates, and existing causal methods typically assume the structural treatment effect 
model accounting for the observed covariates is homogeneous. (iii) Participants were more likely 
to self-report when they experienced smoke or had health symptoms, leading to informative non-
responses (Rubin, 1976); i.e. the missingness mechanism due to nonresponses depends on the 
missing values themselves even adjusting for all observed variables. Failure to appropriately ac-
count for informative missingness may also lead to bias. These opportunities and challenges are 
identified for the Smoke Sense citizen science platform; however, a causal inference framework 
to study the relationship between interventions and health outcomes from mobile application 
data would have wider application in health and behaviour research.

Confounding by indication poses a unique challenge to drawing valid causal inference of treat-
ment effects from observational studies. For example, sicker patients are more likely to take the ac-
tive treatment, whereas healthier patients are more likely to take the control treatment. 
Consequently, it is not meaningful to compare the outcome from the treatment group and the con-
trol group directly. Moreover, in longitudinal observational studies, confounding by indication is 
likely to be time-dependent (Robins & Hernán, 2009), in the sense that time-varying prognostic fac-
tors of the outcome affect the treatment assignment at each time, and thereby distort the association 
between treatment and outcome over time. In these cases, the traditional regression methods are 
biased even after adjusting for the time-varying confounders (Robins et al., 1992).

Parametric g-computation (Robins, 1986), Marginal Structural Models (Robins, 2000), and 
Structural Nested Models (Robins et al., 1992) are three major approaches to overcoming the 
challenges with time-varying confounding in longitudinal observational studies. However, the ex-
isting causal models typically assume the spatial homogeneity of the structural treatment effect 
models accounting for the observed covariates; i.e. the treatment effect is a constant across loca-
tions. This assumption is questionable in studies with smartphone applications, including the 
Smoke Sense Initiative, where the smoke exposure, study participant’s motivations, and treatment 
vary across a large, socially, and environmentally diverse domain. It is likely that the treatment 
effect varies across spatial locations. Although spatially varying coefficient models exist (e.g. 
Gelfand et al., 2003), they restrict to study the associational relationship of treatment and outcome 
and thus lack causal interpretations. Reich et al. (2021) provided a comprehensive review of spa-
tial causal inference methods and suggested that causal models with spatially varying effects are 
largely needed.

We establish the causal effect model that allows the causal effect to vary over space accounting 
for unmeasured spatial treatment effect modifiers. Under the standard sequential randomization 
assumption, we show that the local causal parameter can be identified based on a class of estimat-
ing equations. To borrow information from nearby locations, we adopt the local estimating equa-
tion approach via local polynomials (Fan & Gijbels, 1996) and geographical kernel weighting 
(Fotheringham et al., 2003). Moreover, we also derive the asymptotic theory and propose an 
easy-to-implement inference procedure based on the wild bootstrap. Within the new framework, 
a challenge arises for selecting the bandwidth parameter determining the scale of spatial treatment 
effect heterogeneity. Existing methods rely on cross-validation on predictions, where a typical loss 
function is the mean squared prediction error, which is not applicable under the causal framework 
because the task is estimating causal effects rather than predicting outcomes. This is due to the fun-
damental problem in causal inference that not all ground-truth potential outcomes can be ob-
served (Holland, 1986). We propose a loss function using a new balancing criterion for 
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bandwidth selection. Finally, we propose to use an instrumental variable for the Smoke Sense ap-
plication that adjusts for informative missingness.

Our analytic framework is appealing for multiple reasons. First, the framework is semiparamet-
ric and does not require modeling the full data distribution. Second, it is doubly robust in the sense 
that, with a correct treatment effect model, the proposed estimator is consistent if either the pro-
pensity score model or a nuisance outcome mean model is correctly specified. Third, it is flexible 
enough to handle informative missingness by inverse probability weighting of estimating func-
tions. Fourth, it is a very general framework of spatially and time-varying causal effect estimation 
which has much potential in many other mobile health applications such as diagnostic and treat-
ment support, disease and epidemic outbreak tracking, etc (Adibi, 2014).

The rest of the paper is organized as follows. Section 2 introduces the data sources and notation. 
Section 3 describes existing global structural nested mean models (SNMMs). Section 4 develops 
new local SNMMs, local estimation, and the asymptotic properties. We extend the framework 
to handle informative nonresponses with instrument variables in Section 5. We apply the method 
to the simulated data and real data collected from the Smoke Sense Initiative in Section 6 and 
Section 7, respectively. We conclude the article with a discussion in Section 8.

2 Smoke Sense citizen science study
The dataset from the Smoke Sense citizen science study combines the self-reported observations of 
smoke, health symptoms, and behavioural actions taken in response to smoke and the estimated 
exposure to wildfire smoke recorded by the National Oceanic and Atmospheric Administration’s 
Office of Satellite and Product Operations Hazard Mapping System’s Smoke Product (HMS).

2.1 Smoke Sense app
The Smoke Sense citizen science study is facilitated through the use of a smartphone application, a 
publicly available mobile application on the Google Play Store and the Apple App Store. The app 
invites users to record their smoke observations and health symptoms, as well as the actions they 
took to protect their health. In the app, participants can also explore current and forecasted daily 
air quality, learn where the current wildfires are burning (Figure 1), read about the progress of the 
wildfire suppression efforts, and observe satellite images of smoke plumes. Participants are also 
invited to play educational trivia games, explore what other users are reporting, learn strategies 
to minimize exposure, and learn about the health impacts of wildland fire smoke. Participants 
earn badges for the level of participation as users, observers, learners, and reporters.

In this study, the outcome of interest is the number of user-reported adverse health symptoms 
during the 2019 smoke season, reported as weekly summaries. The weekly number of adverse 
events ranged from 0 to 15 with a mean (SD) of 2.6 (3.2). The treatment is a binary indicator 
of whether the participant took strong protective behaviours—staying indoors with extra protect-
ive behaviours like using an air cleaner or a respirator mask. Other variables include the baseline 
information when registered in the app including age, gender, first 3-digits of the zip code, etc, and 
time-varying variables including self-reported smoke experience, days of visibility impacted, etc, 
which users are reminded of reporting every week. More details about the variables are provided 
in online supplementary materials. In our analysis, we include n = 1,882 users who reported base-
line and time-varying variables. Among these users, 471 reported more than once and the max-
imum number of reporting is 61.

2.2 Wildfire smoke exposure
For each user-week, the exposure to smoke is determined based on HMS (http://satepsanone. 
nesdis.noaa.gov/pub/volcano/FIRE/HMS_ARCHIVE/). The HMS data contain the spatial con-
tours of satellite observed imagery of smoke together with the estimated density of fine particulate 
matter (PM2.5) based on the air quality model. The smoke density in the HMS data is summarized 
by four levels: none, light (PM2.5 range: 0–10 μg/m3, medium (10.5–21.5 μg/m3), and dense 
(≥ 22 μg/m3), where each level is summarized by the midpoint of the corresponding range (0, 5, 
16, and 27 μg/m3, respectively). We map the highest daily exposure value to each zip code and 
aggregate the HMS data by taking the maximum value over the 3-digit zip code (zip3). We restrict 
our analysis to the time period from September 2018 to the end of 2019 and across zip3 where 
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there were more than 10 Smoke Sense users. Figure 2 shows the map of the maximum weekly 
smoke density across zip3 geographic locations during the study period, where the west coast 
showed heavier wildland fire smoke occurrence.

2.3 Notation
We follow the notation from the standard structural nested model literature (Robins, 1994). We 
assume n subjects are monitored over time points t0, . . . , tK. For privacy concerns, the spatial lo-
cation of the subjects are summarized by their 3-digit zip codes. To obtain the latitude and longi-
tude of the spatial location, s = (s1, s2), we average the latitude and longitude coordinates over all 
the 5-digit zip codes which have the same 3-digit zip codes (the latitude and longitude coordinates 
corresponding to each 5-digit zip code are available at https://public.opendatasoft.com/explore/ 
dataset/us-zip-code-latitude-and-longitude/export/). The subjects are assumed to be an independ-
ent sample, which is a plausible assumption since the health symptoms in the data are not like in-
fectious decease so that the interference is not likely. And for simplicity, we omit a subscript for 
subject and location; that is, any variable will have a subject index i and a location index s impli-
citly. Let Ak be the binary treatment at tk (Ak = 1 if the subject reported taking the strong protect-
ive behaviours, and Ak = 0 if the subject did not take any behaviour or took some mild protective 
behaviours). Let X0 be a vector of baseline variables, including the subject’s demographic infor-
mation (e.g. sex, age, race, education level), baseline health information (e.g. preexisting condi-
tions, physical activity level, time spent outdoors), and current beliefs about smoke and air 
pollution. Let Xk ∈ Xk be a vector of baseline covariates and time-varying variables at tk 

Figure 1. A screen shot of the Smoke Sense App alerting the user of local fires and air quality.
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(e.g. the recent experience of smoke, feeling status, visibility). Let Yk be the outcome at tk (the total 
number of symptoms the subject had including e.g. anxiety, asthma attack, chest pain).

We use overbars to denote a variable’s history; e.g. Ak = {Am : m = 0, . . . , k}, and the complete 
history AK abbreviates to A. Let Y(a)

k be the outcome at tk, possibly counterfactual, had the subject 
followed treatment regime a over the study period from t0 to tK. For simplicity, we use Y(am)

k 
(m ≤ k) to denote the potential outcome at tk had the subject followed treatment regime am until 
tm and no treatment onwards. We assume that the observed outcome Yk is equal to Y(A)

k for 
k = 0, . . . , K as different strong protective behaviours considered in our study presumably reduce 
exposure to smoke or harmful air to a similar extent. Finally, V = (A, X, Y) denotes the subject’s 
full records. Up to Section 5, we shall assume that all subjects’ full records are observed. We let P 

be the probability measure induced by V and Pn be the empirical measure for V1, . . . , Vn; i.e. 
Pnf (V) = n−1n

i=1 f (Vi) for any real-valued function f (v).

3 Global structural nested mean models
The treatment effect is defined in terms of the expected value of potential outcomes under different 
treatment trajectories. Because both the treatment and outcome are longitudinal, and there may be 
a lag time between the treatment and its effect, we define the causal effect of the treatment at tm on 
the outcome at tk for k ≥ m. SNMMs are one type of causal models designed to properly handle 
such time-varying treatments and confounders. We have provided additional details using a 
directed acyclic graph in the online supplementary material to illustrate their ability to capture 
time-varying treatment effects, as compared to standard regression models.

Definition 1 (Global SNMM). Let a−1 denote a null set by convention, and γm,k(ψ∗) = 
γm,k(am, xm; ψ∗) be a known function of (am, xm) with a vector of unknown 
parameters ψ∗ ∈ Rp with a fixed p ≥ 1. For 0 ≤ m ≤ k ≤ K, the treatment 
effect is characterized by

E Y(am−1,am)
k − Y(am−1,0)

k ∣ Am−1 = am−1, Xm = xm

 
= γm,k(ψ∗), (1) 

where the causal effect is the expected difference in the response at tk 
between two counterfactual regimes with the same treatment before tm, dif-
ferent treatment at tm, and no treatments after tm.

Figure 2. Maximum daily Hazard Mapping System smoke density level in each three-digit zip code over the study 
period. The smoke density has four levels: None, Light, Medium, and Heavy (corresponding to 0, 5, 16, and 
27  μg/m3, respectively). The vertical line is at longitude −115.
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To help understand the model, consider the following example.

Example 1 Assume γm,k(ψ∗) = δ exp{−(tk − tm − μ)2/(2σ2)}am, where ψ∗ = (δ, μ, σ2) is the 
vector of parameters.

This model entails a key feature for the treatment effect curve: the effect of treatment am on fu-
ture health outcomes increases smoothly over time, reaches to a peak effect δ after μ units of time, 
and decreases to zero as time further increases. The rationale behind this delayed effect pattern is 
that taking protective behaviours may not lead to immediate changes in health outcomes. 
Therefore, the impact on the total number of adverse health symptoms is anticipated to peak after 
a certain duration and gradually decrease to zero for large time lags.

This framework can also include effect modifiers. For example, we can consider 
γm,k(ψ∗) = am(1, xT

m)ψ∗, where xm is a (p − 1)-vector of the individual characteristics and 
ψ∗ = (ψ∗1, . . . , ψ∗p)T. Therefore, the class of SNMMs has important applications in precision medi-
cine (Chakraborty & Moodie, 2013) for the discovery of optimal treatment regimes that are tail-
ored to individuals’ characteristics and environments.

Parameter identification requires the typical sequential randomization assumption (Robins 
et al., 1992) that for 0 ≤ m ≤ k ≤ K, Y(am)

k ⊥⊥ Am ∣ Lm, where Lm = (Am−1, Xm, Ym−1). This as-
sumption holds if Lm captures all confounders for the treatment at tm and ensuing outcomes. 

Define the propensity score as e(Lm) = P(Am = 1 ∣ Lm). Moreover, define H(Am−1)
k (ψ∗)= 

Yk −
k

l=m γl,k(ψ∗) and μm,k(Lm) = E{H(Am−1)
k (ψ) ∣ Lm}. Intuitively, H(Am−1)

k (ψ∗) removes the accumu-
lated treatment effects from tm to tk from the observed outcome Yk, so it mimics the potential out-
come Y(am−1)

k had the subject followed am−1 = Am−1 but no treatment onwards. The sequential 

randomization assumption states that Y(am−1)
k and Am are independent given Lm. Robins et al. 

(1992) showed that H(Am−1)
k (ψ∗) inherits this property in the sense that E{H(Am−1)

k (ψ) ∣ Am, Lm} = 

E{H(Am−1)
k (ψ) ∣ Lm}. As a result, with any measurable, bounded function qk,m :Lm →R

p,

G(V; ψ) =
K

m=1

K

k=m

qk,m(Lm) H(Am−1)
k (ψ) − μm,k(Lm)

 
{Am − e(Lm)} (2) 

is unbiased at ψ∗. Then, under a regularity condition that E{∂G(V; ψ)/∂ψ} is invertible, the solution 
to E{G(V; ψ)} = 0 uniquely exists, and therefore ψ∗ is identifiable.

The estimating function G(V; ψ) depends on qk,m(Lm). The choice of qk,m(Lm) does not affect 
the unbiasedness but estimation efficiency. We adopt an optimal form of qk,m(Lm) given in the 
online supplementary material. With this choice, the solution to PnG(V; ψ) = 0 has the smallest 
asymptotic variance compared to other choices (Robins, 1994).

4 Local structural nested mean model
Global SNMMs in Section 3 allow time-varying treatment effects but not spatially varying treat-
ment effects. That is, the treatment effects for a given time are the same across space. Although the 
global SNMMs can model the spatial heterogeneity of treatment effects by using the observed spa-
tial covariates, there may be unobserved location-specific heterogeneity. To overcome this issue, 
we extend to a new class of models that allows modeling spatial treatment effect heterogeneity us-
ing spatially local parameters. Specifically, Section 4.1 proposes the spatially varying SNMM to 
estimate the location-specific treatment effect. Section 4.2 introduces an extension of the 
location-specific estimating equations by incorporating the neighbourhood information through 
geographically weighted regression. Section 4.3 examines the asymptotic properties of the pro-
posed estimator, and Sections 4.4– 4.6 offer guidance on tuning the bandwidth, bias correction, 
and inference in practice.
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4.1 Spatially varying structural nested mean models
The local SNMM is formulated by considering a vector of spatially varying parameters, denoted as 
ψ∗(s), for each location s in (1).

Definition 2 (Local SNMM). Let γm,k{ψ∗(s)} = γm,k{am, xm; ψ∗(s)} be a known function of 
(am, xm) with a vector of spatially varying parameters ψ∗(s) ∈ R p with fixed 
p ≥ 1. For 0 ≤ m ≤ k ≤ K, the treatment effect is characterized by

E Y(am−1,am)
k − Y(am−1,0)

k ∣ Am−1 = am−1, Xm = xm

 
= γm,k{ψ∗(s)}, (3) 

where s is a fixed location that is implicitly involved in the left-hand side of (3).

Consider the following example in parallel to Example 1.

Example 2 Assume γm,k{ψ∗(s)} = δ(s)exp[−(tk − tm − μ(s))2/{2σ(s)2}]am, where s is a given 
spatial location.

The local model in Example 2 entails that the treatment would increase the mean of the outcome 
for subjects at location s by δ(s) at its peak when tk = tm + μ(s) if the subject had received the treat-
ment at tm. The spatial variations in the timing and intensity of peak effects are captured by μ(s) 
and δ(s), which can be attributed to various location-specific heterogeneity.

4.2 Geographically weighted local polynomial estimation
There are an infinite number of parameters because ψ∗(s) varies over s. Estimation of ψ∗(s) at a giv-
en s may become unstable with only a few observations at s, or even infeasible at locations without 
any observations. To make estimation feasible, one can make some global structural assumptions 
about ψ∗(s) with a fixed number of unknown parameters. However, this approach is sensitive to 
model misspecification. To overcome this difficulty, we combine the ideas of local polynomial ap-
proximation and geographically weighted regression. That is, we leave the global structure of ψ∗(s) 
unspecified but approximate ψ∗(s) locally by polynomials of s. Then, we use geographical weight-
ing to estimate the local parameters by pooling nearby observations whose contributions diminish 
with geographical distance.

To be specific, we consider estimating ψ∗(s∗) at a given s∗. We approximate ψ∗(s) = 
{ψ∗1(s), . . . , ψ∗p(s)}T in the neighbourhood of s∗ by the first-order local polynomial,

ψlp(s; ϕ) =
ϕT

1d(s∗ − s)
..
.

ϕT
pd(s∗ − s)

⎛

⎜
⎝

⎞

⎟
⎠

p×1

, ϕ j =
ϕ j,0
ϕ j,1
ϕ j,2

⎛

⎝

⎞

⎠

3×1

, d(s∗ − s) =
1

s∗1 − s1

s∗2 − s2

⎛

⎝

⎞

⎠

3×1

, 

and ϕ = (ϕ1,0, . . . , ϕ p,0, ϕ1,1, . . . , ϕ p,1, ϕ1,2, . . . , ϕ p,2)T is the vector of unknown coefficients. 
Although we use the first-order local polynomial approximation, extensions to higher-order ap-
proximations are straightforward with heavier notation. As established in Section 2, ψ∗(s∗) is iden-
tified based on the estimating function (2), so we adopt the local estimating equation approach 
(Carroll et al., 1998) with geographical weighting. We propose a geographically weighted estima-
tor ϕτ(s

∗) by solving

Pn ωτ(‖s∗ − s‖)d(s∗ − s) ⊗ G{V;ψlp(s; ϕ, μ, e)}
 

,

= Pn ωτ(‖s∗ − s‖)

1

s∗1 − s1

s∗2 − s2

⎛

⎜
⎝

⎞

⎟
⎠

⎧
⎪⎨

⎪⎩

⊗
K

m=1

K

k=m

qk,m(Lm) H(Am−1)
k {ψ̃lp(s; ϕ)} − μm,k(Lm)

 
{Am − e(Lm)}

 

= 0,

(4) 
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for ϕ, where M1 ⊗ M2 denotes the Kronecker product of M1 and M2, H(Am−1)
k {ψ̃lp(s; ϕ)} = 

Yk −
k

l=m γl,k{ψ̃lp(s; ϕ)}, and ωτ(·) is a spatial kernel function with a scale parameter τ. The first 

p-vector ϕτ,0(s∗) in ϕτ(s
∗) estimates ψ∗(s∗). The estimating equation (4) assigns more weight to ob-

servations nearby than those far from the location s∗. The commonly used weight function is 
ωτ(‖s∗ − s‖) = τ−1K{‖s∗ − s‖/τ}, where K(·) is the Gaussian kernel density function. The scale par-
ameter τ is the bandwidth determining the scale of spatial treatment effect heterogeneity; ψ∗(s) is 
smooth over s when τ is large, and vice versa.

We illustrate the geographically weighted estimator of ψ∗(s∗) with a simple example, which 
allows an analytical form.

Example 3 For the spatially varying structural nested mean model in Example 2, the geo-
graphically weighted estimator of ψ∗(s∗) is the first p-vector of ϕτ(s

∗) solving 
(4), with γm,k{ψ̃lp(s; ϕ)} = δlp(s; ϕ)exp[−{tk − tm − μlp(s; ϕ)}2/{2σlp(s; ϕ)2}]am, 
where

δlp(s; ϕ) = δ + ϕ1,1(s∗1 − s1) + ϕ1,2(s∗2 − s2),

μlp(s; ϕ) = μ + ϕ2,1(s∗1 − s1) + ϕ2,2(s∗2 − s2),

σlp(s; ϕ)2 = σ2 + ϕ3,1(s∗1 − s1) + ϕ3,2(s∗2 − s2), 

and ϕ = (δ, μ, σ2, ϕ1,1, ϕ2,1, ϕ3,1, ϕ1,2, ϕ2,2, ϕ3,2).

Remark 1 It is worth discussing an alternative way to approximate μm,k(Lm) by noticing 

that μm,k(Lm) = E{Y(Am−1)
k ∣ Lm}. It amounts to identifying subjects who fol-

lowed a treatment regime (Am−1, 0) and fitting the outcome mean model based 
on Yk and Lm among these subjects.

4.3 Asymptotic properties
We show that the proposed estimator has an appealing double robustness property in the sense 
that the consistency property requires that one of the nuisance function models is correctly speci-
fied, not necessarily both. This property adds protection against possible misspecification of the 
nuisance models. Below, we establish the asymptotic properties of ϕτ,0(s∗), including robustness, 
asymptotic bias and variance. Assume the observed locations are continuously distributed over 
a compact study region. Let fs(s) be the marginal density of the observed locations s, which is 
bounded away from zero. Also, assume that ψ(s) is twice differentiable with bounded derivatives. 
The kernel function K(·) is bounded and symmetric, and the bandwidth satisfies τ→ 0 and nτ2 →

∞ as n→∞.

Theorem 1 Suppose Assumption 1, the sequential randomization assumption and the 
regularity conditions presented in the online supplementary material
hold. Let ϕτ(s

∗) be the solution to (4) with μm,k(Lm) and e(Lm) replaced by 

their estimates μm,k(Lm) and e(Lm). Let ϕτ,0(s∗) = eT
1
ϕτ(s

∗), where 

e1 = (I p×p, 0p×p, 0 p×p)T. If either μm,k(Lm) or e(Lm) is correctly specified, 
ϕτ,0(s∗) is consistent for ψ∗(s∗), and

nτ2fs(s∗)
 −1/2 ϕτ,0(s∗) − ψ∗(s∗) − τ2Gb(s∗)

 
→N {0p×1, Gv(s∗)}, 

where Gb{s∗, K, ψ(s∗)} and Gv{s∗, K, ψ(s∗)} do not depend on τ.

The proof and the expressions of Gb{s∗, K, ψ(s∗)} and Gv{s∗, K, ψ(s∗)} are presented in the online 
supplementary material.
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4.4 Bandwidth selection using a balancing criterion
We use the K-fold cross-validation to select the bandwidth τ. An important question arises about 
the loss function. We propose a new objective function using a balancing criterion. The key insight 

is that with a good choice of τ, the mimicking potential outcome H(Am−1)
k {ϕτ,0(s∗)} is approximately 

uncorrelated to Am given Lm; therefore, the distribution of H(Am−1)
k {ϕτ,0(s∗)} is balanced between 

Am = 1 and Am = 0 among the group with the same Lm. If Lm contains continuous variables, 
the balance measure is difficult to formulate because it involves forming subgroups by collapsing 
observations with similar values of Lm. To avoid this issue, inspired by the estimating functions, 
we formulate the loss function as

Gloss{V; ψ(s∗)} = Pnωτ(‖s∗ − s‖)







×
K

m=1

K

k=m

H(Am−1)
k {ϕτ,0(s∗)}


−μm,k(Lm)


{Am −e(Lm)}






.

(5) 

If τ is too small, ϕτ,0(s∗) has a large variance and also ωτ(‖s∗ − s‖) is only nontrivial for few locations 
in the τ-neighbourhood of s∗, which leads to a large value of Gloss{V; ψ(s∗)}; while if τ is too large, 
ϕτ,0(s∗) has a large bias, which translates to a large loss too. Therefore, a good choice of τ balances 
the trade-off between variance and bias.

4.5 Bias correction
Theorem 1 provides the asymptotic bias formula, which however involves derivatives of ψ∗(s∗) and 
is difficult to approximate. Following Ruppert (1997), we extend the empirical bias correction 
method to the geographically weighted framework. For a fixed location s∗, we calculate ϕτ,0(s∗) 
at a series of τ over a prespecified range T = {τ1, . . . , τL}, where L is at least 3. Based on 
Theorem 1, the bias function of ϕτ,0(s∗), with respect to τ, is of order τ2. This motivates a bias func-
tion of a form b(τ; ν) = ν1τ2 + · · · + νqτq, where q is an integer greater than 2 and ν = (v1, . . . , νq)T is 

a vector of unknown coefficients. Based on the pseudo data {τ,ϕτ,0(s∗) : τ ∈ T }, fit a function 

E{ϕτ,0(s∗)} = ν0 + b(τ; ν) to obtain ν. Then, we estimate the bias of ϕτ,0(s∗) by b(τ;ν). The debiased 

estimator is ϕbc
τ,0(s∗) =ϕτ,0(s∗) − b(τ;ν).

4.6 Wild bootstrap inference
For variance estimation, Carroll et al. (1998) proposed using the sandwich formula in line with the 
Z-estimation literature. The sandwich formula is justified based on asymptotics. To improve the 
finite-sample performance, Galindo et al. (2001) proposed a bootstrap inference procedure for lo-
cal estimating equations. However, this procedure involves constructing complicated residuals 
and a heuristic modification factor. Thus, we suggest an easy-to-implement wild bootstrap method 
for variance estimation of ϕbc

τ,0(s∗).
For each bootstrap replicate, we generate exchangeable random weights ξi (i = 1, . . . , n ) inde-

pendent and identically distributed from a distribution that has mean one, variance one and is in-
dependent of the data; e.g. Exp(1). The regular nonparametric bootstrap is included as a special 
case by adopting the multinomial distribution to generate the weights. Repeat the cross-validation 
for choosing τ, calculation of ϕτ,0(s∗), and bias-correction steps but all steps are carried out using 
weighted analysis with ξi for subject i. Importantly, we do not need to reestimate the nuisance 
functions for each bootstrap replication, because they converge faster than the geographically 
weighted estimator. This feature can largely reduce the computational burden in practice. The 
variance estimate V(s∗) of ϕbc

τ,0(s∗) is the empirical variance of a large number of bootstrap repli-
cates. With the variance estimate, we can construct the Wald-type confidence interval as 
ϕbc

τ,0(s∗) ± z1−α/2{V(s∗)}1/2.
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5 Extension to the settings with nonresponses
In large longitudinal observational studies, nonresponses are ubiquitous. To accommodate non-
responses, let R = (R0, . . . , RK) be the vector of response indicators; i.e. Rm = 1 if the subject re-
sponded at tm and 0 otherwise. With a slight abuse of notation, let V = (A, X, Y, R) be the full 
data. Let πm(V) = P(Rm = 1 ∣ V) be the response probability at tm. If the response probabilities 
are known, an inverse probability weighted (IPW) estimating function

Gipw{V; ψ(s)} =
K

m=1

K

k=m

ωm : k(R)qk,m(Lm) H(Am−1)
k {ψ(s)} − μm,k(Lm)

 
 

× {Am − e(Lm)},

(6) 

is unbiased at ψ∗(s), where ωm : k(R) =
k

l=m {Rlπl(V)−1} is the IPW of responding from tm to tk. The 
geographically weighted local polynomial framework applies by using (6) for estimating ψ∗(s∗).

In practice, πm(V) is unknown. We require further assumptions for identification and estimation 
of πm(V). The most common approach makes a missingness at random assumption (Rubin, 1976) 
that πm(V) depends only on the observed data but not the missing values. In smartphone applica-
tions with subject-initiated reporting, whether subjects reported or not is likely to depend on their 
current status. Then, the response mechanism depends on the possibly missing values themselves, 
leading to an informative nonresponse mechanism. In these settings, one can utilize a nonresponse 
instrument to help identification and estimation of πm(V) (Li et al., 2020; Wang et al., 2014). For 
illustration, we assume a simple informative response mechanism that πm(V) = π(Vm), where 
Vm = (Am, Xm, Ym, Rm−1); i.e. πm(V) depends only on the current (possibly missing) status 
(Am, Xm, Ym) and the number of historical responses. Extension to more complicated mechanisms 
is possible at the expense of heavier notation. We then posit a parametric response model, denoted 
by πm(Vm; η∗) with an unknown parameter η∗ ∈ Rd. For informative nonresponses, the parameter 
η∗ is not identifiable even with a parametric model (Wang et al., 2014). We assume that there exists 
an auxiliary variable Zm called a nonresponse instrument that can be excluded from the nonres-
ponse probability, but are associated with the current status even when other covariates are con-
ditioned (see Condition C1 in Theorem 1 of Wang et al., 2014 for the formal definition). Existence 
of such nonresponse instruments depends on the study context and available data. For example, in 
the Smoke Sense initiative, a valid nonresponse instrument is the smoke plume data HMS meas-
ured at monitors, which is related to the subject’s variables but is unrelated to whether the subject 
reporting or not after controlling for subject’s own perceptions about risk.

With a valid instrument, η∗ is identifiable. Following Robins and Rotnitzky (1997), η can be ob-
tained by solving

Pn

K

m=0

Rm

πm(Vm; η)
− 1

 

h(Zm, Rm−1) = 0, (7) 

where h(Zm, Rm−1) ∈ Rd is a function of (Zm, Rm−1). An additional complication involves esti-
mating the nuisance functions μm,k(Lm) and e(Lm) in the presence of nonresponse, which now re-
quires weighting similar to that in (6). The IPW approach requires an accurate model for response 
probability. Following Yang (2022) and Coulombe and Yang (2024), future work could enhance 
robustness against model misspecification. We leave this for future research. We summarize the 
stepwise procedures to obtain the proposed estimator under informative missingness in 
Algorithm 1, and defer the technical details to the online supplementary material.

6 Simulation study
We evaluate the finite-sample performance of the proposed estimator on simulated datasets to 
evaluate the double robustness property. We first consider the simpler case without nonresponses 
in Section 6.1 and then consider the case with nonresponses in Section 6.2 to mimic the Smoke 
Sense data. All codes are parallelized and executed on a computer with Intel(R) Core(TM) 
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i7-8565U CPU, 16 RAM computer. The proposed geographically weighted estimation takes ap-
proximately 8 hr when evaluated on a 10 × 10 grid of spatial locations for one replicated dataset 
in our simulation study.

6.1 Complete data without nonresponses
In this section, we simulate 500 datasets without nonresponse. In each dataset, we generate n locations. 
For each location, each subject are associated with P covariates and the subject’s pth covariate 
process over K = 25 weeks follows a Gaussian process with mean 0, variance 0.5 and a first-order 
autocorrelation structure with lag-1 correlation 0.5 for p = 1, . . . , P. We generate the potential out-

come process as Y(0)
k =

P
p=1 Xp,k + ϵk, for k = 1, . . . , K, where Xp,k is the subject’s pth covariate 

at time tk, and ϵ follows a Gaussian process with mean 0, variance 0.25, and a first-order 
autocorrelation structure with lag-1 correlation 0.25. We generate the treatment process as 
A, where Ak ∼ Binomial{e(Lk)} with logit{e(Lk)} = −1 + 0.5

P
p=1 Xp,k + 0.25 cum(Ak−1) and 

cum(Ak−1) =
k−1

m=0 Am. The observed outcome process is Yk = Y(0)
k +

k−1
m=0 γm,k{ψ∗(s)}, where 

γm,k{ψ∗(s)} = ψ∗(s)Am, if k = m + 1 and zero otherwise. We consider three treatment effect specifica-
tions for location s = (s1, s2). In the first two scenarios, n = 1, 076 locations are uniformly sampled over 
a unit square with P = 1. In the third scenario, we consider a similar dimension of covariates as the 
Smoke Sense data with P = 25 and an unobserved spatial covariate Z in an irregular grid. For a given 
location s∗ = (s∗1, s∗2), we generate another covariate process ZK = (Z1, . . . , ZK)T from a Gaussian pro-

cess with mean μZ(s1, s2) =
��������

s2
1 + s2

2



/100, variance 0.5 and a first-order autocorrelation structure with 

lag-1 correlation 0.5; and the treatment effect γm,k{ψ∗(s)} = ZmAm. In the fitting process, {Zm, m = 
1, . . . , K} are merely a set of unobserved realizations of random variables. Thus, the true treatment ef-
fect ψ∗(s) should be μZ(s1, s2), which is the mean of ZK. Mimicking the spatial dependence in the Smoke 
Sense data, the data points with size n = 1, 882 are selected spread over an irregular grid. 

(S1) ψ∗(s) = exp(s1 + s2);
(S2) ψ∗(s) = sin {2(s1 + 2s2 − 1)};
(S3) ψ∗(s) = μZ(s1, s2).

Algorithm 1 Geographically weighted local polynomial estimation for structural nested mean models

Input: Subjects’ full records V = (Am, Xm, Ym)K
m=0, their spatial locations s = (s1, s2), the grid for selecting τ, the 

polynomial order q for modeling the bias function, and the bootstrap size B.

Step 1. Fit a response probability model πm(V) via (7).

Step 2. Fit a propensity score model e(Lm) by solving

Pn

K

m=0

Rmπ−1
m (V) Ame−1(Lm) − 1

 
h(Lm)

 

= 0. (8) 

Step 3. For each location s∗, obtain a initial estimator ϕ[0]
τ (s∗) by solving (4) with G{V; ψlp(s; ϕ)} replaced by 

Gipw{V;ψlp(s; ϕ)} in (6), where ϕ[0]
τ (s∗) is the first p-vector in ψlp(s; ϕ).

Step 4. Using the pseudo outcome H(Am−1)
k

ϕ[0]
τ,0(s∗)

 
and Lm, fit an outcome mean model μm,k(Lm) using the IPW 

estimating equation.

Step 5. Obtain ϕτ,0(s∗) by solving the IPW version of (4) with e(Lm) and μm,k(Lm).

Step 6. The debiased estimator ϕbc
τ,0(s∗) =ϕτ,0(s∗) − b(τ;ν) with ν fitted by polynomial regression with order q.

Repeat Steps 1-6 for B times with random weights ξi(i = 1, . . . , n) to compute Pn, and obtain the empirical 
variance V(s∗) of the bootstrap replicates.

Output: A debiased local geographical kernel weighting estimator ϕbc
τ,0(s∗) and its confidence interval 

ϕbc
τ,0(s∗) ± z1−α/2 V(s∗)

 1/2
.
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We then consider estimating ψ∗(s∗) at four locations. For (S1) and (S2), s∗ = (s∗1, s∗2) and s∗j ∈ 
{0.25, 0.75} (j = 1, 2). For (S3), the evaluation locations are s∗1 = (37.4 − 122.3), 
s∗2 = (39.2, −122.3), s∗3 = (37.4, −120.2), and s∗4 = (39.2, −120.2) whose lattitude and longitude 
degrees are 1/5 and 4/5 quantiles of the lattitude and longitude degrees in the real data set.

To investigate the double robustness in Theorem 1, we consider two models for μm,k(Lm): (a) a 
correctly specified linear regression model and (b) a misspecified model by setting μm,k(Lm) = 0. 
We also consider two models for e(Lm): (a) a correctly specified logistic regression model with pre-
dictors Xm and cum(Am−1) and (b) a misspecified logistic regression model with predictors X2

m and 
cum(Am−1)2. For all estimators, we consider a grid of geometrically spaced values for τ from 
{exp(0.005), exp(0.05)} and use fivefold cross validation in Section 4.4 to choose τ; see the 
online supplementary material for the Monte Carlo average of the selected τ over a grid of spatial 
locations and additional simulations. The integer q in the bias function is chosen to be 3. We use 
the wild bootstrap for variance estimation with the bootstrap size 200.

Table 1 reports the simulation results for Scenarios (S1)–(S3), respectively. When either the 
model for the propensity score or the model for the outcome mean is correctly specified, the pro-
posed estimator has small bias for all treatment effects at all locations across three scenarios. These 
results confirm the double robustness in Theorem 1. Moreover, under these cases, the wild boot-
strap provides variance estimates that are close to the true variances and good coverage rates that 
are close to the nominal level.

6.2 Informative nonresponses
In this section, we generate data with informative nonresponses. The data-generating processes are 
the same as in Section 6.1, except that P = 1 for simplicity and a vector of response indicators R 
is generated, where Rk ∼ Binomial{πk(Yk, Rk−1)} with logit{πk(Yk, Rk−1)} = −c + 0.5Yk + 0.25 
cum(Rk−1), where c = −1 for (S1), (S2) and c = −2 for (S3). If Rk = 1, (Ak, Xk, Yk) is observed, 
otherwise only Xk is observed. Thus, Xk is a nonresponse instrument. We compare the following 
estimators. 

GWLPc1: the geographically weighted local polynomial estimator with the nonresponse weights 
setting to a constant 1, which corresponds to the proposed estimator with a misspecified mod-
el for the nonresponse probability;

GWLPipw: the proposed geographically weighted local polynomial estimator with inverse prob-
ability of nonresponse weighting adjustment.

For both estimators, we consider correctly specified models for the outcome mean and propensity 
score. We use the same cross-validation and wild bootstrap procedures as in Section 6.

Table 2 reports the simulation results with informative nonresponses for Scenarios (S1)–(S3). 
The GWLPc1 estimator without the inverse probability of nonresponse weighting adjustment is 
biased, and its coverage rate is off the nominal level, suggesting that informative missingness 
would lead to biased conclusions. The GWLPipw estimator with proper weighting adjustment 
has small bias for all locations across all scenarios.

7 Smoke Sense data application
We now apply the new methodology to the Smoke Sense data to estimate heterogeneous effects of 
protective measures to mitigate the health impact of wildland fire smoke. We follow the basic setup 
in Section 2, where the data are recorded monthly (tk = k is the kth month after registration).

To model the treatment effect, a complication arises because taking protective behaviours might 
not have immediate effects on health outcomes and also the effect on the future outcomes eventu-
ally reduces to zero for large time lags. Taking these features into account, we consider the treat-
ment effect model of a squared exponential function of the time lag (tk − tm) as

γm,k(ψ∗) = δexp −
(tk − tm − μ)2

2σ2

 

am, (9) 
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where ψ∗ = (δ, μ, σ2) is the vector of parameters. A negative sign of δ indicates that the treatment is 
beneficial in reducing the number of adverse health outcomes, a larger magnitude of δ means a lar-
ger maximum treatment effect, vice versa, and σ2 determines the duration of the effect across time 
lags. We consider fitting a global model (9) in Section 7.1 and a local model with spatially varying 
ψ∗(s) in Sections 7.2 and 7.3. To assess the fitted nuisance functions and the local treatment effect 
models, a set of diagnostic analyses are conducted in online supplementary material, Section S6.4. 
According to the model diagnostic statistics, there is no significant evidence to reject the condition-
al independence between Yk −

k
l=m γl,k{ψ∗(s∗)} −μm,k(Lm) and Am −e(Lm) for most selected loca-

tions and cities. This suggests that Lm adequately captures the confounding variables, and 
Yk −

k
l=m γl,k{ψ∗(s∗)} closely resembles the potential outcome Y(am−1)

k . Thus, we conclude that 

the models γm,k{ψ∗(s∗)}, μm,k(Lm), and e(Lm) are well fitted.
For the missing values of the covariates, we impute the missing time-varying variables by carry-

ing forward the last observations, and the missing time-independent variables by mean imput-
ation, i.e. the average and max frequency values to impute the continuous/ordinal variables and 
categorical variables, respectively. The reason that we employ this imputation strategy is to pre-
serve the assumption of sequential ignorability by avoiding the imputation of missing values based 
on future observations. Furthermore, our proposed method is evaluated after utilizing multiple 
imputations to fill in the missing covariates in online supplementary material, Section S6.2, where 
the global treatment effects exhibit a similar pattern. It should be noted that the randomness due to 
the missing covariates is accounted for by reimputing each bootstrapped dataset in the wild boot-
strap procedure.

We adopt the nonresponse instrument variable approach in Section 5 to adjust for informative 
nonresponses. We assume the response probability πm(Vm) follows a logistic regression with a lin-
ear predictor ηT 1 Am Ym cum(Rm−1)

 
. To identify and estimate η, we use the nonresponse instru-

ment HMSm, the true smoke status, which affects the subject’s health status but is unrelated to 
whether the subject reporting or not after controlling for the subject’s own perceptions about 
risk. The estimator of η is obtained by solving the estimating equation (7) with 

h(Zm, Rm−1) = 1 cum(Rm−1) HMSm HMS2
m

 T

. The solution is η̂ = (0.04, 0.05, 0.11, 0.14)T, in-

dicating that more active participants with worse health outcomes are more likely to report. 
The proposed estimation (6) requires approximately 10 hr to be completed for a single spatial lo-
cation of the Smoke Sense data under the treatment effect model (9).

7.1 Global estimation
We first consider fitting a global model and estimate the spatially stationary parameters δ, σ2 and μ 
by solving the estimating equation (2), which yields estimates (δ, μ̂, σ̂2) = (−0.3, 7.0, 3.0). Besides 
considering the Gaussian distributional-based treatment effect model as (9), for sensitivity 
analysis, we also tried the Gamma distributional-based model as shown in the online 
supplementary materials, which gives a similar pattern.

Figure 3 shows the estimated global treatment effect curve with peak height (δ = −0.3 symp-
toms), peak location (μ̂ = 7.0 month), and duration (≈ 1 year). The results suggest a long-lasting 
effect of taking protective measures in reducing adverse health outcomes. The estimated lag be-
tween taking protective measures and the maximum reduction in symptoms is 7.0 months and 
the estimated reduction in symptoms at this lag is 0.3 symptoms. With the wild bootstrap, the 
95% confidence interval for δ is (−0.5, −0.2), and thus the treatment effect is statistically signifi-
cant. We also conduct a sensitivity analysis with a different γm,k(ψ∗). The results in online 
supplementary material, Section S4.1 suggest that the conclusions are robust to the functional 
form of γm,k(ψ∗).

7.2 Local estimation
The global model assumes the treatment effect curve is the same at all locations. Figure 4 shows 
that the participants of the Smoke Sense Initiative spread all over the west coast of the U.S. It is 
likely that the treatment effect can have spatial heterogeneity due to the large and diverse socially 
and environmentally diverse study domain that is not explained by the observed covariates. In 
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order to investigate the spatially varying treatment effect, we fit a local model using geographical 
weighting (4). To reduce the computational burden, we use local constant approximation instead 
of local linear approximation. We choose spatial locations for evaluation as follows. We first set a 
grid of 56 locations over the west coast of the U.S.; the locations are combinations of 7 equally 
spaced values for the latitude coordinate from 33 to 47 and 8 equally spaced values for the longi-
tude coordinates from −123 to −115. Among these locations, we select 28 locations that have 
samples within the one-degree neighbourhood and have more than 0.5% samples within the two- 
degree neighbourhood. online supplementary material, Table S4 reports the estimates δ, μ̂ and σ̂2 

and their confidence intervals at the 28 locations, and Figure 5 shows the colour map of δ. One 
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Figure 3. Global treatment effect curve by time lag. The lag (k −m) is the time between treatment (at the mth 
month) and outcome (at the kth month). The solid line is the treatment effect γm,k (ψ̂∗) evaluated at the estimated 
values ψ̂∗ = (δ, μ̂, σ̂2) = (−0.3, 7.0, 3.0). The dashed lines are the 95% confidence bands constructed from 200 
bootstrapped samples.

Figure 4. The number of users in each three-digit zip code over the study period. The vertical line is at longitude 
−115.
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important finding is that users located in the southwest are more likely to experience significant 
beneficial treatment effects.

To gain insights into the primary covariates driving the spatial variation in the estimated treat-
ment effect, we consider fitting a random forest model for the estimated treatment effects δ(s) 
against all the baseline characteristics and two time-varying environmental variables (‘Air quality 
yesterday’ and ‘HMS’). The variable importance, depicted in Figure 6, is arranged based on their 

Figure 5. Estimated treatment effect δ for the 28 locations in the Western U.S. The shapes of symbols denote 
whether δ is insignificant, significantly negative (SN) or significantly positive (SP). The background colour is the 
maximum daily HMS smoke density in each three-digit zip code. The units of effect is the number of symptoms.

Age
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No smoke−reducing tool

No considering to reduce smoke

Common smoke
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Highest education level
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Health status

Alert help

Possible to reduce smoke

Smoke impact

HMS

Air quality yesterday

Gender

0 10 20
Variable Importance (Mean Decrease in Residual Sum of Squares)

Figure 6. Variable importance plot of the random forest regression model in terms of the mean decrease in residual 
sum of squares.
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impacts in reducing the residual sum of squares. Upon analysing Figure 6, we observe that 
‘Gender’ and ‘Air quality yesterday’ emerge as the two most critical covariates responsible for 
the spatial variation in the treatment effects. Hence, these two variables play a significant role 
in explaining the spatial-specific treatment effects.

7.3 Analysis for cities and national parks
We fit the local model to several cities including Spokane, Portland, Seattle, San Diego (SD), 
San Francisco (SF), Los Angeles (LA), Reno and Las Vegas (LV), as well as prominent national 
parks including Okanogan-Wenatchee National Forest (OW), Boise, Yosemite National Park 
(Yosemite), Death Valley National Park (DV), Joshua Tree National Park (Joshua), Lassen 
National Forest (Lassen). Figure 7 shows a forest plot of the point estimates and confidence inter-
vals for δ. The results align with our discoveries in Section 7.2 that a majority of users in southwest 
locations (e.g. LA, SD, and Joshua) have significant beneficial treatment effects, whereas such pro-
nounced benefits are uncommon in the northwest. The right panel of Figure 7 provides further evi-
dence with location-specific confidence intervals, confirming the existence of a spatially diverse 
treatment effect.

8 Discussion
It has become increasingly feasible to evaluate treatment and intervention strategies on public 
health as more health and activity data are collected via mobile phones, wearable devices, and 
smartphone applications. We establish a new framework of spatially and time-varying causal ef-
fect models. This provides a theoretical foundation to utilize emerging smartphone application 
data to draw causal inference of interventions on health outcomes. Our approach does not require 
specifying the full distribution of the covariate, treatment, and outcome processes. Moreover, our 
method achieves a double robustness property requiring the correct specification of either the 
model for the outcome mean or the model for the treatment process. The key underpinning as-
sumption is sequential treatment randomization, which holds if all variables are measured that 
are related to both treatment and outcome. Although essential, it is not verifiable based on the ob-
served data but relies on subject matter experts to assess its plausibility.

The goal of the Smoke Sense citizen science study is to engage the participants on the issue of 
wildfire smoke as a health risk and facilitate the adaptation of health-protective measures. Our 
new analysis framework reveals that there is a spatially varying health benefit and that the global 
model underestimates the treatment effect in areas with the highest exposure to wildland fire 

Figure 7. Location (left) and 95% confidence intervals of treatment effects (right) for the selected cities and national 
parks. The vertical black dash line is the global treatment effect estimate.
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smoke. This new knowledge obtained from the spatial analysis may also help Smoke Sense scien-
tists and developers improve the app by targeting different people with different messaging.

There are several directions for future work. First, the study’s conclusion is restricted to Smoke 
Sense participants and may not apply to the general population. Generalizing these findings to a 
broader population is an interesting topic, as discussed by Lee et al. (2023, 2022), Lee, Yang, et al. 
(2024), and Lee, Gao, et al. (2024). Second, this work focuses on structural nested ‘mean’ models 
for continuous or approximately continuous outcomes. It is important to continue the develop-
ment of local causal models to accommodate different types of outcomes. For example, we can 
consider the structural nested failure time models for a time-to-event outcome (Yang et al., 
2020). Third, the current framework relies on the sequential treatment randomization assump-
tion. Yang and Lok (2017) relaxed this assumption by defining a bias function that quantifies 
the impact of unmeasured confounding and developed a modified estimator for the class of global 
SNMMs. Additional work is necessary to assess the impact of possible uncontrolled confounding 
for the new class of local SNMMs. Alternatively, Guan et al. (2023) introduced a spectral perspec-
tive that presents a novel approach to addressing unmeasured spatial confounders, which could be 
explored in our context. Finally, with the app is continuously collecting more data from the users, 
one of the interesting future directions would be incorporating the covariates into the treatment 
effect model and estimate the optimal personalized behaviour recommendations.
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